RAID-Level

Definition

Ein RAID (Redundant Array of Independent Disks) ist ein Verbund zwei oder mehr verschiedenen Speichermedien zu einem einzelnen logischen Laufwerk. Die konkrete Funktion bestimmen die jeweiligen Festplatten-Setups, die man auch als RAID-Level bezeichnet.

Das primäre Ziel von einem RAID ist es, die Sicherheit gespeicherter Daten zu erhöhen. Ausfälle einzelner Festplatten sollen auf diese Weise kompensiert werden und nicht zu Datenverlust führen. Hierfür setzen die einzelnen RAID-Level verschiedene Techniken ein, um Dateien redundant zu speichern. Das klassische Verfahren ist beispielsweise die **Spiegelung aller Daten**. Alternativ setzen andere RAID-Level auf **Paritätsinformationen**, die gemeinsam mit den Nutzdaten auf den eingebundenen Datenträgern gespeichert werden und – im Falle eines defekten Speichermediums – die schnelle und einfache Wiederherstellung der Daten ermöglichen.

Ein RAID ist kein Backup-Ersatz: Die räumlich und zeitlich getrennte Speicherung von Dateien, die klassische Backups auszeichnen, ist in RAID-Verbunden nicht gegeben!

RAID: 0, 1,5, 6, 01, & 10 von Sunny Classroom

https://www.youtube-nocookie.com/embed/nSbOPbtU60w

Spiegelung aller Daten

Alle Schreibzugriffe erfolgen parallel auf zwei Laufwerke, sodass jede Platte quasi **ein Spiegelbild der anderen darstellt**. Alle Daten stehen also doppelt zur Verfügung. Auch wenn eines der beiden Laufwerke komplett ausfällt, bleiben alle Nutzdaten erhalten. Allerdings steht bei RAID 1 nur die Hälfte der gesamten Plattenkapazität für die Speicherung zur Verfügung. **Die Kosten der Datenhaltung verdoppeln sich also.**

Paritätsinformationen

Ein Paritätsbit ist ein Prüfbit, das zur Fehlererkennung in der Paritätsprüfung eingesetzt wird. Dies wird sendeseitig zu den Datenbits hinzugefügt, wodurch die Bitsumme gerade oder ungerade wird. Empfangsseitig wird die Bitsumme überprüft. Entspricht die empfangene Bitsumme nicht der vorgegebenen Parität, - die beispielsweise gerade sein muss - dann liegt ein Übertragungsfehler vor. Eine gerade Parität ist dann gegeben, wenn durch das hinzugefügte Bit die Gesamtzahl der Einsen in einer Dateneinheit geradzahlig wird.

Ein RAID-Verbund nutzt erweiterte Versionen von Paritätschecks. Manche RAID-Level, etwa RAID 4 oder RAID 5, legen die Paritätsinformationen auf einem oder mehreren Laufwerken ab und können so das RAID wiederherstellen, wenn ein Laufwerk ausfällt. Wenn Daten auf ein RAID geschrieben werden, haben diese immer die korrekte Parität, da sie zuvor diverse Fehlerkorrekturchecks durchlaufen. Fällt ein Laufwerk in einem RAID-Verbund aus, kann das System die verlorenen Daten aus den auf den verbliebenen Laufwerken gespeicherten Informationen und den Paritätsinformationen rekonstruieren und auf ein Spare-Laufwerk schreiben.

Beispiel eine RAID 4/5/6 Parität

Paritätsinformationen in Fett und Rot (0111)

- Berechnen der Paritätsinformationen mittels eines XOR aus den Eingangsdaten von HDD
 und HDD 2
- 2. Ausfall der HDD 2
- Wiederherstellung der Informationen von HDD 2 aus Daten von HDD 1 und HDD 3 mittels XOR

Schritt	HDD 1	HDD 2	HDD 3
1	1010	1101	0111
2	1010	xxxx	0111
3	1010	1101	0111

RAID-Level

	RAID 0	RAID 1	RAID 5	RAID 6	RAID 10 (1+0)
Mindestanzahl an Festplatten	2	2	3	4	4
Verwendete Verfahren	Striping	Spiegelung (Mirroring)	Striping und Parität	Striping und doppelte Parität auf unterschiedlichen Platten	Striping gespiegelter Daten

Ausfallsicherhe it	niedrig	sehr hoch; Ausfall eines Laufwerks möglich	mittel; Ausfall eines Laufwerks möglich	hoch; Ausfall von zwei Laufwerken möglich	sehr hoch; Ausfall eines Laufwerks pro Sub-Array möglich
Speicherkapazi tät	100 %	50 %	67 % (steigt mit jeder weiteren Platte)	50 % (steigt mit jeder weiteren Platte)	50 %
Geschwindigkei t beim Schreiben	sehr hoch	niedrig	mittel	niedrig	mittel
Geschwindigkei t beim Lesen	sehr hoch	mittel	hoch	hoch	sehr hoch
Kostenfaktor	niedrig	sehr hoch	mittel	hoch	sehr hoch

Revision #12 Created 1 August 2022 07:33:09 by Joshua Lieder Updated 5 August 2022 16:40:44 by Joshua Lieder